
ML Obesity Journal

Jonathan Woodruff

July 28, 2025

Introduction

This journal documents in detail the process I used to create my supervised machine learning (ML)
model for obesity predictions.

It is useful to show employers the steps I took to arrive at the final product.

Step 1: ETL

• July 29, 2025 — I downloaded the dataset from UC Irvine Machine Learning Repository and
used the pandas read me() function to convert it to a DataFrame.

Step 2: Data Cleaning

• July 30, 2025

– I learned more about the data by printing df.info()

– I confirmed there are no null values by using df.columns[df.isnull().sum() > 0]

– I noticed the ”Age” feature is sometimes listed as an integer and is sometimes listed as
a float. For consistency, I took the floor of the Age values and converted the data type
to int.

take_floor = lambda x: np.floor(x)

df[’Age’] = df[’Age’].apply(take_floor).astype(int)

– I researched the meaning of the acronym for each feature name in the dataset.

• July 31, 2025

– I realized the dataset is populated with mostly synthetic data, which explains why some
of the Age values are of type float, so I reverted the Age data back to the original float
values.

– I looked at the unique values, min, and max of each feature to see if I could spot anything
unexpected.

1

https://archive.ics.uci.edu/dataset/544/estimation+of+obesity+levels+based+on+eating+habits+and+physical+condition
https://docs.google.com/spreadsheets/d/1Xg7TEJkczFkPpO_VpPcsozOaXYhaS6lV6ByUNBCaE9c/edit?usp=sharing

for feature in df:

print(’######FEATURE: ’ + feature)

print(df[feature].unique())

print(df[feature].min())

print(df[feature].max())

Step 3: Exploratory Data Analysis

• July 31, 2025

– I gave an order to the ordinal variables.

df[’CAEC’] = pd.Categorical(df[’CAEC’], [’no’, ’Sometimes’, ’Frequently’, ’Always’], ordered=True)

df[’CALC’] = pd.Categorical(df[’CALC’], [’no’, ’Sometimes’, ’Frequently’, ’Always’], ordered=True)

Figure 1: Age distribution

male 1068
female 1043

Table 1: Gender (frequencies)

2

Figure 2: Height Distribution

Figure 3: Weight Distribution

3

yes 1726
no 385

Table 2: Family history with overweight (frequencies)

yes 1866
no 245

Table 3: FAVC (frequencies)

no 51
Sometimes 1765
Frequently 242
Always 53

Table 4: CAEC (frequencies)

yes 44
no 2067

Table 5: SMOKE (frequencies)

yes 96
no 2015

Table 6: SCC (frequencies)

no 639
Sometimes 1401
Frequently 70
Always 1

Table 7: CALC (frequencies)

Public Transportation 1580
Automobile 457
Walking 56
Motorbike 11

Bike 7

Table 8: MTRANS (frequencies)

4

Obesity Type I 351
Obesity Type II 297
Obesity Type III 324
Overweight Level I 290
Overweight Level II 290
Normal Weight 287

Insufficient Weight 272

Table 9: NObeyesdad (label frequencies)

Step 4: Model Selection

–• August 4, 2025

– I followed the diagram from scikit-learn to select a model. I will be predicting a category,
I have labeled data, and I have less than 100,000 samples, so I will start with linear
SVC.

– Per the documentation on SVC, I realized I need to normalize the features before fitting
the model.

Step 5: Feature Engineering

• August 6, 2025

– I realized having users respond to 16 survey questions might be too demanding, so I
performed Principal Component Analysis (PCA) to see if I could eliminate some fea-
tures without sacrificing model accuracy. Unfortunately, it seems almost every feature
is required to account for 95% of the variation, so for the sake of my demonstration, I
decided to keep all 16 features/survey questions.

Figure 4: PCA

5

https://scikit-learn.org/stable/machine_learning_map.html
https://scikit-learn.org/stable/modules/svm.html#tips-on-practical-use

–

Step 6: Train-Test Split

• August 7, 2025

– I split the data into 80% training data and 20% testing data.

Step 7: Normalize the Features

• August 7, 2025

– I z-score normalized the features of the training and test data.

scaler = preprocessing.StandardScaler()

X_train = scaler.fit_transform(X_train.values)

Step 8: Fit and Score the Model

• August 7, 2025

– I fit the model using SVC with a linear kernel and otherwise default parameters which
yielded a score of 0.966 on the training data and 0.948 on the testing data.

classifier = SVC(kernel="linear")

classifier.fit(X_train, y_train)

score_train = classifier.score(X_train, y_train)

score_test = classifier.score(X_test, y_test)

Step 9: Hyperparameter Tuning

• August 11, 2025

– I tuned the hyperparameters using grid search and discovered the best parameters are
kernel=linear and C=1. The default gamma value appears to work just as well as other
gamma values.

Initialize hyperparameters

parameters = {

’kernel’: [’linear’, ’rbf’],

’C’: [.01, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1],

’gamma’: np.logspace(-9, 3, 13)

}

#Set up Grid Search

gs = GridSearchCV(classifier, parameters)

6

#fit the grid search classifier to the training data

gs.fit(X_train, y_train)

print(gs.best_estimator_)

print(gs.best_params_)

#compare scores between how the model does on training data (gs.best_score_) and test data

best_score = gs.best_score_

test_score = gs.score(X_test, y_test)

print(best_score)

print(test_score)

#get a nice view of the hyperparameter configurations and their scores

hyperparameter_grid = pd.DataFrame(gs.cv_results_[’params’])

grid_scores = pd.DataFrame(gs.cv_results_[’mean_test_score’], columns=[’score’])

scores = pd.concat([hyperparameter_grid, grid_scores], axis = 1)

print(scores)

Conclusion

In conclusion, linear SVC with default parameters provides an excellent score for predictions on the
testing data.

7

